Search results

Search for "spin pumping" in Full Text gives 4 result(s) in Beilstein Journal of Nanotechnology.

Spin dynamics in superconductor/ferromagnetic insulator hybrid structures with precessing magnetization

  • Yaroslav V. Turkin and
  • Nataliya Pugach

Beilstein J. Nanotechnol. 2023, 14, 233–239, doi:10.3762/bjnano.14.22

Graphical Abstract
  • ways of spin current injection into a superconductor, for example, the spin Hall effect [5], the spin Seebek effect [6], and ferromagnetic resonance spin pumping [7][8]. The spin pumping technique in hybrid structures consisting of a ferromagnetic insulator and a superconductor is considered to be the
  • layer can be changed by spin pumping from the adjacent ferromagnetic insulating layer. Model The investigated structure is schematically presented in Figure 1. The spin current is injected from the ferromagnetic insulator (FI) to the superconducting film (SC). The thickness of the ferromagnetic
  • proximity effect. The spin current can be induced only by the nonstationary flow of triplet Cooper pairs, just as in a conventional spin-pumping bilayer structure with a normal metal [33]. Thus, spin currents cannot emerge when the magnetization is stationary inside the ferromagnetic insulator layer
PDF
Album
Full Research Paper
Published 21 Feb 2023

Influence of the thickness of an antiferromagnetic IrMn layer on the static and dynamic magnetization of weakly coupled CoFeB/IrMn/CoFeB trilayers

  • Deepika Jhajhria,
  • Dinesh K. Pandya and
  • Sujeet Chaudhary

Beilstein J. Nanotechnol. 2018, 9, 2198–2208, doi:10.3762/bjnano.9.206

Graphical Abstract
  • that with the increase in IrMn layer thickness a nearly linear enhancement of the effective magnetic damping constant occurs, which is associated with the simultaneous influence of spin pumping and interlayer exchange coupling effects. An extrinsic contribution to the linewidth originating from the two
  • . Keywords: ferromagnetic resonance; interlayer exchange coupling; magnetic damping; magnetic thin films; spin pumping; Introduction Traditionally, antiferromagnets (AF) are known to play only a static role by pinning adjacent ferromagnetic (FM) layers via exchange bias in spin-valve devices [1]. Recently
  • rapid enhancement with the increase in tIrMn. We explain this increase in damping as a combined effect of spin pumping and interlayer exchange coupling. The spin wave relaxation is explained by taking into consideration the intrinsic as well as extrinsic contributions to the linewidth. In addition, the
PDF
Album
Full Research Paper
Published 20 Aug 2018

Spin-dependent transport and functional design in organic ferromagnetic devices

  • Guichao Hu,
  • Shijie Xie,
  • Chuankui Wang and
  • Carsten Timm

Beilstein J. Nanotechnol. 2017, 8, 1919–1931, doi:10.3762/bjnano.8.192

Graphical Abstract
  • electrode [60]. A distinct scheme of rectification compared to our picture has been proposed recently, which leads to a pure SC, that is, a flow of angular momentum without accompanying CC. This type of SC rectification may be generated by spin pumping techniques [61] or via the spin-Seebeck effect [62
PDF
Album
Review
Published 13 Sep 2017

Spin-chemistry concepts for spintronics scientists

  • Konstantin L. Ivanov,
  • Alexander Wagenpfahl,
  • Carsten Deibel and
  • Jörg Matysik

Beilstein J. Nanotechnol. 2017, 8, 1427–1445, doi:10.3762/bjnano.8.143

Graphical Abstract
  • metal/organic semiconductor/nonmagnetic metal, in which the first interface induces spin pumping [25]. Other devices do not rely on spin manipulation by ferromagnetic layers, but on the intrinsic properties of the organic semiconductor to show, for instance, organic magnetoresistance [26]. These devices
PDF
Album
Review
Published 11 Jul 2017
Other Beilstein-Institut Open Science Activities